QUELLEN

Atmung

Baković, D., Valic, Z., Eterović, D., Vuković, I., Obad, A., Marinović-Terzić, I. and Dujić, Z., 2003. Spleen volume and blood flow response to repeated breath-hold apneas. Journal of Applied Physiology, 95(4), pp.1460-1466.

Cap, A. (2013). The Nose Knows: A Case for Nasal Breathing During High Intensity Exercise — Adam Cap. Retrieved 13 February 2018, from https://adamcap.com/2013/11/29/the-nose-knows/

de Bruijn, R., Richardson, M. and Schagatay, E., 2007. Increased erythropoietin concentration after repeated apneas in humans. European Journal of Applied Physiology, 102(5), pp.609-613.

Engan, H., Richardson, M., Lodin-Sundström, A., van Beekvelt, M. and Schagatay, E., 2011. Effects of two weeks of daily apnea training on diving response, spleen contraction, and erythropoiesis in novel subjects. Scandinavian Journal of Medicine & Science in Sports, 23(3), pp.340-348.

Hostetter, K., Dallam, G., & McClaran, S. (2016). Triathlete Adapts to Breathing Restricted to the Nasal Passage Without loss in VO2max or vVO2max. Journal Of Sport And Human Performance, 4(1), 1-7. doi: DOI: 10.12922/jshp.v4i1.70

Iyengar, B. (2000). Licht auf Pranayama (1st ed.). O.W. Barth Verlag.

Dallam, G., R. McClaran, S., G. Cox, D., & P. Foust, C. (2018). Effect of Nasal Versus Oral Breathing on Vo2max and Physiological Economy in Recreational Runners Following an Extended Period Spent Using Nasally Restricted Breathing. International Journal Of Kinesiology And Sports Science, 6(2), 22. doi: 10.7575/aiac.ijkss.v.6n.2p.22

McKeown, P. (2016). The oxygen advantage. Harper Collins Publ. USA.

Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., & Uchida, A. (2010). Hypoxia Increases Muscle Hypertrophy Induced by Resistance Training. International Journal Of Sports Physiology And Performance, 5(4), 497-508. doi: 10.1123/ijspp.5.4.497

Schwimmen

di Prampero, P. (1999). The concept of critical velocity: a brief analysis. European Journal Of Applied Physiology And Occupational Physiology80(2), 162-164. doi: 10.1007/s004210050574

Maglischo, E. (2003). Swimming fastest. Champaign (IL.): Human Kinetics.

MONOD, H., & SCHERRER, J. (1965). THE WORK CAPACITY OF A SYNERGIC MUSCULAR GROUP. Ergonomics8(3), 329-338. doi: 10.1080/00140136508930810

MORITANI, T., NAGATA, A., DEVRIES, H., & MURO, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics24(5), 339-350. doi: 10.1080/00140138108924856

Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh, Y., & Miyashita, M. (1993). Does critical swimming velocity represent exercise intensity at maximal lactate steady state?. European Journal Of Applied Physiology And Occupational Physiology66(1), 90-95. doi: 10.1007/bf00863406

Wakayoshi, K., Yoshida, T., Udo, M., Kasai, T., Moritani, T., Mutoh, Y., & Miyashita, M. (1992). A Simple Method for Determining Critical Speed as Swimming Fatigue Threshold in Competitive Swimming. International Journal Of Sports Medicine13(05), 367-371. doi: 10.1055/s-2007-1021282

Radfahren

Allen, H. (2015). 4 Key Uses for the Power Duration Model. Retrieved 30 August 2015, from https://www.trainingpeaks.com/blog/4-key-uses-for-the-power-duration-model/

Allen, H. & Coggan, A. (2010). Training and racing with a power meter (2nd ed.). VELOPRESS.

Coggan, A. (2015). Scientific Basis of the New Power Duration Model in WKO4. Retrieved 30 August 2015, from https://www.trainingpeaks.com/blog/scientific-basis-of-the-new-power-duration-model-in-wko4/

Introducing the WKO5 Power Duration Model V2. Retrieved 19 October 2019, from https://www.wko5.com/wko-power-duration-model-v2

Laufen

Coggan, A. (2016). WKO4: New Metrics for Running With Power. Retrieved 3 July 2018, from https://www.trainingpeaks.com/blog/wko4-new-metrics-for-running-with-power/

Dijk, J., & Megen, R. (2017). ˜Dasœ Geheimnis des Laufens (1st ed.). Aachen: Meyer & Meyer.

Hutchinson, A., 2020. Rethinking What Power Meters Mean for Runners. [online] Outside Online. Available at: <https://www.outsideonline.com/2419911/running-power-stryd-research-2020> [Accessed 23 December 2020].

Palladino, S. (2017). Understanding Running Effectiveness and its Uses. Retrieved 10 September 2018, from https://docs.google.com/document/d/e/2PACX-1vTzjH-Ns_GInUm4lAxi3cVOQpzzKcWNF6VEX271s-QGYFHjwMgyLhhmu5i21-1_CaC3eL0B817rQo8k/pub

Palladino, S. (2019). The Differences Between Running and Cycling Power. Retrieved 29 August 2019, from https://www.trainingpeaks.com/blog/the-differences-between-running-and-cycling-power/

Snyder, K., Kipp, S. and Hoogkamer, W., 2020. Running Power Definition and Utility. [ebook] Available at: <https://www.stryd.com/running-power-definition> [Accessed 23 December 2020].

Vance, J. (2016). Run with power. Boulder, Colorado: VeloPres.

Krafttraining

Balsalobre-Fernández, C., & Jiménez-Reyes, P. (2014). Entrenamiento de Fuerza – Nuevas Perspectivas Metodológicas. Carlos Balsalobre-Fernández. doi: https://www.carlos-balsalobre.com/#ibook

Balsalobre-Fernández, C., Santos-Concejero, J., & Grivas, G. V. (2016). Effects of Strength Training on Running Economy in Highly Trained Runners: A Systematic Review With Meta-Analysis of Controlled Trials. Journal of strength and conditioning research, 30(8), 2361–2368. https://doi.org/10.1519/JSC.0000000000001316

Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. Journal of sports sciences, 36(1), 64–70. https://doi.org/10.1080/02640414.2017.1280610

Jiménez-Reyes, P., Samozino, P., García-Ramos, A., Cuadrado-Peñafiel, V., Brughelli, M., & Morin, J. B. (2018). Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ, 6, e5937. https://doi.org/10.7717/peerj.5937

Samozino, P., Rejc, E., Di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force-velocity profile in ballistic movements–altius: citius or fortius?. Medicine and science in sports and exercise, 44(2), 313–322. https://doi.org/10.1249/MSS.0b013e31822d757a

Shalfawi, S. A., Sabbah, A., Kailani, G., Tønnessen, E., & Enoksen, E. (2011). The relationship between running speed and measures of vertical jump in professional basketball players: a field-test approach. Journal of strength and conditioning research, 25(11), 3088–3092. https://doi.org/10.1519/JSC.0b013e318212db0e

Blog: Freiwasserschwimmen und die Zugfrequenz

Maglischo, Ernest. (2003). Swimming fastest. The essential reference on technique, training, and program design. Human Kinetics.

Blog: Wie erhöht man die aerobe Kapazität (VO2max)?

Billat, V., Petot, H., Karp, J., Sarre, G., Morton, R., & Mille-Hamard, L. (2012). The sustainability of VO2max: effect of decreasing the workload. European Journal Of Applied Physiology113(2), 385-394. doi: 10.1007/s00421-012-2424-7

Bossi, A., Mesquida, C., Passfield, L., Rønnestad, B., & Hopker, J. (2020). Optimizing Interval Training Through Power-Output Variation Within the Work Intervals. International Journal Of Sports Physiology And Performance15(7), 982-989. doi: 10.1123/ijspp.2019-0260

Denham, J., Scott-Hamilton, J., Hagstrom, A., & Gray, A. (2020). Cycling Power Outputs Predict Functional Threshold Power and Maximum Oxygen Uptake. Journal Of Strength And Conditioning Research34(12), 3489-3497. doi: 10.1519/jsc.0000000000002253

Lamberts, R. (2018). Calculate your VO2max and 40km TT time – Science & Cycling – Official website of the LSCT. Retrieved 10 December 2020, from http://www.scienceandcycling.com/predicting-cycling-performance/calculate-your-vo2max-40km-tt-time/

Lamberts, R., Lambert, M., Swart, J., & Noakes, T. (2011). Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists. British Journal Of Sports Medicine46(1), 36-41. doi: 10.1136/bjsm.2010.083071

Wilmore, J., & Costil, D. (1994). Physiology of sport and exercise. Champaign, Ill.: Human Kinetics.

Blog: Atemmuster und Atemfehler erkennen

McKeown, P., 2016. The Oxygen Advantage. William Morrow Paperbacks.

The Nose Knows: A Case for Nasal Breathing During High Intensity Exercise — Adam Cap. (2013). Retrieved 20 March 2020, from https://adamcap.com/2013/11/29/the-nose-knows/

Blog: Neue Weltbestenzeiten? Was sagt die Sportwissenschaft?

Allen, H. & Coggan, A. (2012). Wattmessung im Radsport und Triathlon.

Cooper, R. (2022). Is a sub 4 hour Ironman bike split possible. TrainingPeaks

Bergström, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica, 71(2–3), 140–150. doi:10.1111/j.1748-1716.1967.tb03720.x 

Cooper, R. (2022b). Is a sub 4 hour Ironman bike split possible. TrainingPeaks.

https://www.trainingpeaks.com/blog/is-a-sub-4-hour-ironman-bike-split-possible/

Gribble, S. (n.d.). Retrieved from https://www.gribble.org/cycling/power_v_speed.html 

Hauser, T., Mäbert, A., & Schulz, H. (2011). Influence of exercise duration on the maximum lactate production rate. Exercise, sports and health : second joint research conference in Chemnitz, Germany, 09.-11. September 2009, S. 149-154. http://www.qucosa.de/fileadmin/data/qucosa/documents/7165/exercise_sports_health.pdf

Lidbury, E. & Lidbury, E. (2022). What is Coefficient of Drag—And why should you care?

Triathlete. https://www.triathlete.com/training/what-is-coefficient-of-drag-and-why-should-you-care/

Precision Fuel & Hydration case studies. (o. D.). https://www.precisionhydration.com/athletes/case-studies/triathlon/leon-chevalier/08-10-2022/

Vossen, L. (2023). Retrieved from https://inscyd.com/article/increase-triathlon-performance-3-effective-but-uncommon-ways/ 

Whiting, C. S., Hoogkamer, W., & Kram, R. (2022). Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates. Journal of Sport and Health Science, 11(3), 303–308. doi:10.1016/j.jshs.2021.10.004 

„Training…und der Rest passiert im Kopf.“

WordPress Cookie Plugin von Real Cookie Banner